Omni Calculator logo
Last updated:

Revised Trauma Score Calculator

New

Table of contents

The pathophysiology of traumaWhy should we calculate RTS?How to calculate RTS?RTS interpretation and survival probabilityLet's get an example!

Revised Trauma Score (RTS) is a scoring system that considers the physiological response to trauma. It is used by intensive care specialists and emergency physicians to determine the health status of the patient and the survival probability. Using only three simple clinical data, which are assessed in every patient in an emergency, makes it feasible in every situation.

Read on if you want to find out:

  • What pathophysiological changes happen in trauma?
  • Why do you need to use RTS?
  • How to calculate RTS?
  • What does the result tell you?

Another calculator that can be used to evaluate the status of your patient is the shock index calculator.

The pathophysiology of trauma

Major trauma is an injury that may lead to death or disability. According to WHO, it is one of the leading causes of death worldwide. Regardless of the cause and type of the injury, pathophysiological changes lead to decreased organ perfusion, cellular ischemia, and a cascade of edema and inflammation which causes fever, altered mental status, and increased heart rate, cardiac output and metabolism.

The more severe the trauma, the more intensified the pathophysiological changes are and the poorer the patient's prognosis.

Why should we calculate RTS?

The scientists develop trauma score systems to describe the severity of injuries or the prognosis of a patient (which correlates with seriousness) with a single numerical value. The purpose of trauma scales is to improve and simplify communication about trauma cases and to support decision-making in the individual patient.

How to calculate RTS?

Revised Trauma Score derived from the original Trauma Score published by Champion and associates in Critical Care Medicine. The Revised Trauma Score provides a general assessment of physiological derangement due to trauma. It combines coded measurements of:

The results from that measurements are given values as follows:

GCS

Value

SBP

Value

RR

Value

15-13

4

'>89

4

10-29

4

12-9

3

76-89

3

29

3

8-6

2

'>50-75

2

6-9

2

5-4

1

'>1-49

1

1-5

1

3

0

'>0

0

0

0

The coded value is multiplied by a weighting factor derived from regression analysis of a North American database. The equation is as follows:

RTS = (0.9368 × GCS Value) + (0.7326 × SBP Value) + (0.2908 × RR Value)

RTS interpretation and survival probability

Values of RTS may range from 0 to 7.8408. The lower the value of RTS, the poorer the prognosis is for the patient. Patients with an RTS value of 4 or less should be treated in trauma centers. The survival probability correlates with the RTS value.

RTS value

0

1

2

3

4

5

6

7

7.8408

Survival probability

2.7%

7.1%

17.2%

36.1%

60.5%

80.7%

91.9%

96.9%

98.8%

Let's get an example!

A patient, after a serious car accident, is unconscious, GCS 5 pts, SBP 80mmHg, RR 30/min. To estimate his RTS, you can calculate it with the formula above. The patient receives 1 GCS value point, 3 SBP value points, and 3 RR value points, so the equation looks like this:

RTS = (0.9368 × 1) + (0.7326 × 3) + (0.2908 × 3)

RTS = 4.007

This result means that:

  1. The patient has about a 60.5% chance of survival;
  2. He should probably be treated in the trauma center.

pts

mmHg

/min

Check out 14 similar intensive & emergency care calculators 🚑
Alvarado scoreAPACHE IIGlasgow coma scale...11 more