Omni Calculator logo

Thread Calculator

Created by Kenneth Alambra
Reviewed by Wojciech Sas, PhD and Steven Wooding
Based on research by
British StandardSpecification for ISO metric screw threads – Part 1: Principles and basic data;
Last updated: Feb 22, 2024


This thread calculator will help you find the different nut and bolt thread dimensions under ISO metric standards. In this metric thread calculator, you will learn:

  • How to determine metric thread sizes;
  • How to read and understand metric thread callouts;
  • The formulas for metric external thread dimensions;
  • The formulas for metric internal thread dimensions; and
  • What metric thread class means.

Let's start by learning what threads are. 🔩

🔎 Are you looking for rivet sizes instead? Perhaps you'll find what you need in our rivet size calculator.

What are threads?

Threads can mean a lot of things. In this thread calculator, we'll discuss the screw thread made out of grooves and ridges wrapped around a cylindrical or conical metal shaft in a helix pattern. The thread's helix spiral pattern acts like an inclined plane that translates rotational movement to axial movement while gaining some mechanical advantage.

💡 Learn about the physics behind inclined planes with our inclined plane calculator and how we can utilize different simple machines for mechanical advantage with our mechanical advantage calculator.

As a result, a screw thread offers a locking feature that would require a good amount of shear stress to break, making it great for fastening objects together. This kind of thread can be an external thread (like on a screw or bolt) or an internal thread (like what we see inside a nut). We call these threaded materials threaded fasteners.

Though we can also see threads in other applications, like bottle caps, bulbs, pipes and connectors, and even worm gears, this thread calculator focuses specifically on metric threads. Metric threads have symmetrical V-shaped threads that form 60º-angle grooves and have basic dimensions shown below:

Longitudinal section of a portion of an internal thread and an external thread with labels for their dimensions.

The major diameter is the largest diameter of an external or internal thread. We also call this diameter the gross diameter or nominal diameter of the thread. On the other hand, the minor diameter is the smallest diameter of an external or internal thread. We also call it the root or core diameter of the thread.

In between these two diameters is the pitch diameter. The pitch diameter is the thread's diameter in which the thickness of the thread and the space between two threads are equal. We can approximate the pitch diameter's value by taking the average of the minor and major diameters of the thread. Visit our pitch diameter calculator to learn more about it.

Thread pitch, or simply pitch is the distance between a point on one thread to the corresponding point on the thread adjacent to it (for example, the measurement from crest to crest or from root to root). Learn more about thread pitch by checking out our thread pitch calculator.

The metric thread callout

Understanding your metric threads starts with knowing how to read metric thread callouts. A thread callout is the same as a threaded fastener's label when you see them in a hardware store. Any thread standard has its own thread callout, and here is an example of a metric thread callout:

M10 × 1 × 25\text{M10 × 1 × 25}

We read this callout as "M-ten by one by twenty-five" where:

  • M\text{M} stands for "metric" and means that the threaded fastener follows the ISO Metric Standard;
  • 1010 in this case, which is the number affixed to the letter M, represents the basic major diameter of the thread;
  • 11 represents the thread pitch; and
  • 2525 is the length of the shaft.

All the measurements in a metric thread callout are in millimeters.

How to determine metric thread sizes

Now that we can read metric thread callouts, we can start calculating our threads' different dimensions. Knowing how to determine metric thread sizes gives us another way to distinguish one threaded fastener from another. As a guide, we are going to use this illustration:

Illustration of an external thread's cross-sectional view to show the fundamental triangle and basic diameters.

From the illustration above, we can see that we can use fractions of H to determine the different metric thread dimensions given the basic major diameter (d\small{d}). But what is H? H\small{H} is the height of the thread's fundamental triangle. The fundamental triangle is the projected equilateral triangle we can form from the thread's cross-section. We can get its height measurement using this formula:

H=P×32,H = P \times \frac{\sqrt{3}}{2},

where:

  • PPThread pitch.

By analyzing the same diagram above, we can then formulate the following equations to find the other basic diameters of an external thread:

  • d1=d2×58×Hd_1 = d - 2 \times \frac{5}{8} \times H

  • d2=d2×38×Hd_2 = d - 2 \times \frac{3}{8} \times H

where:

  • ddBasic major diameter;
  • HHHeight of fundamental triangle;
  • d1d_1Basic minor diameter; and
  • d2d_2Basic pitch diameter.

💡 As you may have noticed, we use the lowercase letter dd to designate diameters for external threads. For convenience, we use the uppercase letter DD for metric internal thread dimensions. That is, dd for external thread major diameter, and DD for internal thread major diameter. Coincidentally, the measurement for these basic major diameters is equal, such that: d=Dd = D.

As a rule of thumb, an internal thread of a given specified size should have the same basic diameters as an external thread of the same specified size. This means that d1=D1d_1 = D_1, and d2=D2d_2 = D_2 where D1D_1 and D2D_2 are the internal thread's basic minor diameter and basic pitch diameter, respectively.

Metric thread classes

From what we have already discussed, the basic diameters of a pair of external and internal threads precisely match each other. However, most of the time we provide some allowances to our threads to have some leeway when fitting them together. This is where metric thread classes come into play.

Metric thread classes indicate a metric thread's tolerance grade and tolerance position. Each tolerance grade and position have corresponding equations that will tell us how much deeper we should cut or cold-roll the threads to achieve those allowances we want.

However, there are limitations as to how much we could deviate from the basic thread dimensions. Therefore, it's good to know our thread's allowable maximum and minimum diameters.

Here are the formulas that we use to find those maximum and minimum diameters:

For external thread major diameter (d):

  • dmax=d+esd_\text{max} = d + es
  • dmin=d+esTdd_\text{min} = d + es - T_\text{d}

For external thread minor diameter (d₁):

  • d1max=d1es2×yd_\text{1max} = d_1 - es - 2 \times y
  • d1min=d1es2×zd_\text{1min} = d_1 - es - 2 \times z

For external thread pitch diameter (d₂):

  • d2max=d2+esd_\text{2max} = d_2 + es
  • d2min=d2+esTd2d_\text{2min} = d_2 + es - T_\text{d2}

For internal thread major diameter (D):

  • Dmin=D+EID_\text{min} = D + EI

For internal thread minor diameter (D₁):

  • D1min=D1+EID_\text{1min} = D_1 + EI
  • D1max=D1+EI+TD1D_\text{1max} = D_1 + EI + T_\text{D1}

For internal thread pitch diameter (D₂):

  • D2min=D2+EID_\text{2min} = D_2 + EI
  • D2max=D2+EI+TD2D_\text{2max} = D_2 + EI + T_\text{D2}

where:

  • eses and EIEIFundamental deviations, upper and lower deviations, respectively;
  • TTTolerances for their corresponding diameters (i.e., Td2T_\text{d2} is the external thread pitch diameter (d2d_2) tolerance); and
  • yy and zzAdjustment values for maximum minor diameter and mininmum minor diameters, respectively.

Here are the equations we use to find the fundamental deviations depending on what tolerance position the threads need to be:

Fundamental deviations for external threads

  • For e position: es=(50+11×P)/1000\small{es = -(50 + 11 \times P) / 1000};
  • For f position: es=(30+11×P)/1000\small{es = -(30 + 11 \times P) / 1000};
  • For g position: es=(15+11×P)/1000\small{es = -(15 + 11 \times P) / 1000}; and
  • For h position: es=0\small{es = 0}.

Fundamental deviations for internal threads

  • For G position: EI=(15+11×P)/1000\small{EI = (15 + 11 \times P) / 1000}; and
  • For H position: EI=0\small{EI = 0}.

On the other hand, here are the different general equations that we use to determine the tolerances based on the tolerance grade of the thread:

For external threads

  • Td(n)=k×(180×P2/33.15×P1/2)/1000\small{T_\text{d}(n) = k \times (180 \times P^{2/3} - 3.15 \times P^{-1/2}) / 1000}; and
  • Td2(n)=k×(90×P0.4×d0.1)/1000\small{T_\text{d2}(n) = k \times (90 \times P^{0.4} \times d^{0.1}) / 1000}

For internal threads

  • TD1(n)=k×(433×P190×P1.22)/1000\small{T_\text{D1}(n) = k \times (433 \times P - 190 \times P^{1.22}) / 1000} (for 0.2 mm ≤ P ≤ 0.8 mm);
  • TD1(n)=k×(230×P0.7)/1000\small{T_\text{D1}(n) = k \times (230 \times P^{0.7}) / 1000} (for P ≥ 1.0 mm);
  • TD2(n)=k×(90×P0.4×d0.1)/1000\small{T_\text{D2}(n) = k \times (90 \times P^{0.4} \times d^{0.1}) / 1000}

In these equations, the value for kk depends on which tolerance grade the threads use, indicated by nn. A bolt with a tolerance grade of n=6n = 6 for its major diameter should use k=1.0k = 1.0 when solving for TD1T_\text{D1}. Here are the other values of k in the table below:

n

k

for Td(n)

for TD1(n)

for Td2(n)

for TD2(n)

3

0.50

4

0.63

0.63

0.63

0.85

5

0.80

0.80

1.06

6

1.00

1.00

1.00

1.32

7

1.25

1.25

1.70

8

1.60

1.60

1.60

2.12

9

2.00

For the minor diameter, you can also see that we've got there two other adjustment variables, yy and zz, incorporated in the equation. Below are the equations we use for that:

y=Rmin×[1cos(π3cos1(1Td2(4×Rmin)))]z=H4+Td22Rmin\footnotesize \begin{align*} y &= R_\text{min} \times \bigg[1 - \cos\bigg(\frac{\pi}{3} -\\ &\qquad\cos^{-1}\left(1 - \frac{T_\text{d2}}{(4 \times R_\text{min})}\right)\!\!\bigg)\bigg]\\\\ z &= \frac{H}{4} + \frac{T_\text{d2}}{2} - R_\text{min} \end{align*}

We calculate RminR_\text{min} to be equal to P8\frac{P}{8}.

For threads with specified thread class details, we can add their codes at the end of the thread callout. For example, an external thread labeled as M30 × 2 × 40 - 5g6g\text{M30 × 2 × 40 - 5g6g} means that it has a pitch diameter tolerance grade of 55 and a major diameter tolerance grade of 66, both of which follow a g\text{g} tolerance position.

How to use the metric thread dimensions calculator

Usually, we only perform manual calculations to find a thread's basic diameters. As you may have found out, it would take many extra steps to determine the diameter limits. And that is where our metric thread dimensions calculator comes in very handy! Here are steps to follow in using our tool:

  1. Choose which dimensions you want to calculate – metric external thread dimensions, internal thread dimensions, or both.
  2. Select the thread pitch of your threads from the drop-down menu.
  3. Input the basic major diameter of your threaded fastener. You can get this measurement from the thread callout or measure this dimension using a pair of precision calipers.
  4. Finally, from the Tolerance class details section of our metric thread calculator, select your fastener's different tolerance grades and tolerance positions, whichever is known to you. You can also see this detail on your metric thread callout.

Once you've done the steps above, you'll immediately see not just the basic diameters but also the maximum and minimum diameters of your thread.

You can also click on the Advanced mode button below our metric thread calculator if you wish to explore the different preliminary measurements used in the calculations, such as the height of the fundamental triangle, deviations, tolerance values, and adjustments.

FAQ

How do I calculate the pitch diameter of a thread?

Let's say we have a bolt with a basic major diameter (d) of 10 mm and a thread pitch (P) of 1.5 mm. To find its pitch diameter:

  1. First, calculate the height of its fundamental triangle (H) using H = P × (√3) / 2. H = 1.5 mm × (√3) / 2 = 1.299 mm.
  2. Then, obtain for the pitch diameter (d₂) using d₂ = d - 2 × (3 / 8) × H, d₂ = 10 mm - 2 × (3 / 8) × 1.299 mm = 9.026 mm.

How do I calculate the minor diameter of a thread?

Let's say we have a bolt with a basic major diameter (d) of 20 mm and a thread pitch (P) of 2 mm. To find its minor diameter:

  1. Calculate the height of its fundamental triangle (H) using H = P × (√3) / 2. H = 2 mm × (√3) / 2 = 1.732 mm.
  2. Obtain for the minor diameter (d₁) using d₂ = d - 2 × (5 / 8) × H, d₂ = 20 mm - 2 × (5 / 8) × 1.732 mm = 17.835 mm.

What is the diameter of an M6 thread?

An M6 thread has a basic major diameter of 6 mm. Typically, metric thread callouts also come with the thread pitch, such that an M6 × 1 threaded bolt has a basic major diameter of 6 mm and a thread pitch of 1 mm. When purchasing a threaded fastener, make sure you have both the diameter and the thread pitch. Without one of those measurements, you could buy the wrong-sized hardware.

What is the nominal diameter of a thread?

The nominal diameter of a thread is the diameter for which a thread is known. We use the nominal diameter for the general identification of threads. For example, a thread with a callout of M10 × 1.5 has a nominal diameter of 10 mm. Generally, the nominal diameter of a thread is the same as the basic major diameter of the thread.

Kenneth Alambra
Option
Calculate...
external thread dimensions
Basic dimensions
Thread pitch
1.25 mm
Basic major diameter
in
Basic pitch diameter
in
Basic minor diameter
in
Note: To calculate the basic major diameter, make sure it is blank before entering your basic pitch or minor diameter.
Tolerance class details
Pitch diameter tolerance grade
5
Major diameter tolerance grade
6
Tolerance position
g
External thread limits
Maximum major diameter
in
Minimum major diameter
in
Maximum pitch diameter
in
Minimum pitch diameter
in
Maximum minor diameter
in
Minimum minor diameter
in
Check out 21 similar materials specifications calculators 🏗️
Beam deflectionBeam loadBending stress… 18 more
People also viewed…

Material removal rate

Find the rate at which material is being removed when turning, milling, and drilling using the material removal rate calculator.

Millionaire

This millionaire calculator will help you determine how long it will take for you to reach a 7-figure saving or any financial goal you have. You can use this calculator even if you are just starting to save or even if you already have savings.

Plant spacing

Optimize your garden layout with our garden spacing calculator. Perfect for precise plant spacing. Plan your dream garden effortlessly now!

Wainscoting

This wainscoting calculator will help you calculate the measurements and dimensions concerning your DIY wainscoting or board and batten project. We also explain the basics of wainscoting installation and some other information you might find useful.