Omni Calculator logo
Última atualização:

Calculadora do Desvio Padrão da Distribuição Amostral da Média

Novo

Índice

O que é o desvio padrão da distribuição amostral da média?Qual é a diferença entre amostra e distribuição amostral?Como calcular o desvio padrão da distribuição amostral da média?Exemplo de como encontrar o desvio padrão da distribuição amostral da médiaPerguntas frequentes

O cálculo do desvio padrão da distribuição amostral da média (também conhecido como desvio padrão da média da amostra e erro padrão), é uma excelente maneira de entender como o tamanho da amostra influencia o erro de nossas estimativas.

Quando o desvio padrão da distribuição amostral da média é multiplicado por um valor crítico, como o escore padrão ou a estatística t, obtemos uma margem de erro que permite declarar um intervalo de confiança de nossa previsão (mais detalhes podem ser encontrados na nossa calculadora de intervalo de confiança). Portanto, o cálculo do desvio padrão da distribuição amostral da média indica onde poderia estar a média da população.

🔎 Após calcular o desvio padrão da distribuição amostral da média, você pode ir um passo além e usar a calculadora de distribuição amostral normal da Omni.

O que é o desvio padrão da distribuição amostral da média?

Antes de mais nada, é importante esclarecer que esse termo também é conhecido como erro padrão.

Também é essencial que você entenda algumas definições e conceitos:

  • Estatística: uma estimativa pontual ou característica numérica de uma amostra (ou seja, média da amostra). É diferente de um parâmetro, como a média da população.
  • Amostra: um conjunto de dados amostrados aleatoriamente. Em outras palavras, é a distribuição de todos os valores possíveis que uma estatística poderia assumir considerando o tamanho da população.
  • Distribuição amostral: essa é uma extensão do conceito anterior. Se você tiver uma população, coletar infinitas amostras de tamanho n e plotar suas médias em um histograma, obterá uma distribuição de probabilidade. Essa distribuição de probabilidade é o que chamamos de distribuição amostral da média e, como qualquer outra distribuição, ela tem sua própria média e desvio padrão.

O diagrama a seguir mostra como você pode gerar uma distribuição amostral da média. Na realidade, não usamos apenas seis amostras, mas um número quase infinito (ou seja, 100.000).

Como a distribuição amostral da média é gerada
Processo da geração da distribuição amostral. Onde o termo population se refere a população, sample 1, 2,... são as amostras e mean é a média.

Dito isso, podemos definir a média do desvio padrão como o desvio padrão de uma distribuição de médias (como a mostrada no último diagrama). Além disso, a média dessa distribuição amostral é igual à média da população.

Agora que você conhece o conceito, vamos ver como calcular o desvio padrão da distribuição amostral da média.

Qual é a diferença entre amostra e distribuição amostral?

A diferença entre uma amostra e uma distribuição amostral é:

  • Distribuição amostral: é o termo que normalmente ouvimos referente à distribuição de probabilidade de uma estatística amostrada aleatoriamente. A distribuição amostral da média é um exemplo.
  • Amostra: é o conjunto de observações obtidas a partir de uma população. Cada amostra contribui para o cálculo da média, que forma a distribuição amostral.

Como calcular o desvio padrão da distribuição amostral da média?

A fórmula para encontrar o desvio padrão da distribuição amostral da média é a seguinte:

σ = σ/√n

onde:

  • σ: desvio padrão da distribuição amostral da média;
  • σ: desvio padrão da população; e
  • n: tamanho da amostra.

Dissemos anteriormente que, se soubermos a média da distribuição amostral (μ), também saberemos a média da população (μ), pois elas são iguais (μ = μ). Na prática, nunca sabemos μ, mas podemos estimá-la usando a média da amostra ().

σ indica como se aproxima de μ. Quanto menor σ, mais próximo μ pode estar de nossa estimativa. Como σ é constante, aumentar o tamanho da amostra é a única maneira de diminuir σ. Portanto, aumentar n é uma forma de reduzir o erro de amostragem de nossas estimativas. Para saber mais sobre como realizar esse procedimento, acesse a nossa calculadora de erro amostral 🇺🇸.

Exemplo de como encontrar o desvio padrão da distribuição amostral da média

Sabemos que a média e o desvio padrão da altura de uma determinada população são aproximadamente μ = 161,3 cm e σ = 7,1 cm. Agora, suponha que você colete aleatoriamente amostras de 100 pessoas e obtenha a altura média de cada uma delas. Qual é o desvio padrão da distribuição amostral da média?

Para saber a resposta, siga estas etapas:

  1. Insira 7,1 no campo de desvio padrão da população.
  2. Insira 100 no campo de tamanho da amostra.
  3. É isso aí. A resposta deve ser 0,71. Portanto, o desvio padrão das distribuições amostrais das médias n = 100 é 0,71.

Você pode verificar os resultados usando a fórmula: σXˉ=σn=7,1100=0,71σ_{\bar X} = \frac{σ}{\sqrt{n}} = \frac{7{,}1}{\sqrt{100}} = 0{,}71

Perguntas frequentes

Como encontrar a média e o desvio padrão da distribuição amostral da média?

  • Para encontrar o desvio padrão da distribuição amostral da média (σ), divida o desvio padrão da população (σ) pela raiz quadrada do tamanho da amostra (n): σ = σ/√n.
  • Ao contrário do desvio padrão, para calcular a média da distribuição amostral da média (μ), você só precisa da média da população (μ), pois ambas são iguais (μ = μ).

Como é chamado o desvio padrão da média da amostra?

O desvio padrão da média da amostra é também conhecido como:

  • Erro padrão; e
  • Desvio padrão da distribuição amostral da média.

Matematicamente, você calcula o desvio padrão da média da amostra com a fórmula σ = σ/√n.

O erro padrão da média (SE(X̄)) é uma estatística diferente que usa o desvio padrão da amostra (s) em vez de σ. Sua fórmula é SE(X̄) = s/√n.

Como criar uma distribuição amostral da média?

Siga estas etapas para criar uma distribuição amostral da média:

  1. Defina um tamanho de amostra.
  2. Pegue uma amostra aleatória desse tamanho e calcule sua média.
  3. Trace essa média em um histograma.
  4. Repita esse processo um número quase infinito de vezes (ou seja, 100.000 vezes) até a distribuição convergir.

O que significa um desvio padrão de 1?

Se estivermos diante de uma distribuição normal, um desvio padrão de 1 (σ = 1) significa que 68,27% dos valores da distribuição estão dentro do intervalo do desvio padrão da distribuição amostral da média. Em notação matemática: P( μ-1σXμ+1σ) ≈ 68,27%.

Se você não souber o valor do desvio padrão (σ), use nossa calculadora de desvio padrão.

Check out 46 similar descriptive statistics calculators 📊
5 number summary5★ rating averageCoefficient of variation...43 more